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Abstract: It presents a deterministic susceptible-infected (SI) model and the corresponding stochastic model
with a Beddington-DeAngelis type incidence rate in the present work. Disease extinction thresholds offer
crucial information for managing, controlling, or eliminating diseases. Ito's formula is used for extinction
analysis in disease-free states. Additionally, we attempt to demonstrate that the SDE model has disease
extinction with probability one, but the deterministic model has an endemic. Lastly, our analytical results are
validated using numerical simulations.
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1. Introduction and model formulation

The most straightforward method for mathematically simulating epidemics is the traditional SI
Model of epidemic spreading (1; 2). Over the past few decades, numerous researchers have
proposed SI models to study a variety of infectious diseases worldwide (3; 4; 5; 6; 7; 8; 9). Some
researchers have recently taken into account different kinds of nonlinear incidence rates in their
research (10; 11; 12; 13; 14). To account for the crowding effect of sick people or the inhibitory
effect of the healthy population’s shifting behaviour, a saturated type incidence rate is also
preferable (15). Beddington-DeAngelis type incidence rate is considered for incidence rate (16).
There is a fixed total number of people. Based on the above assumption, the following deterministic

model is given below:

@) A S+yl
dt =" T 1+bS+b, MY
dl SI
Ao P (ytp+a) (1)

dt — 1+byS+b,l
with nonnegative initial conditions S(0) = 0,7(0) = 0 and S + I = A, which is a constant. Here,
the densities of the susceptible and infected population at any given time t are denoted by S(t) and
I(t). The duration of recovery for infected individuals is y, the rate of illness-induced mortality for
infected individuals is a, the rate of natural mortality for the overall population is $\mu$, and the

total recruitment at any given time t is A. Also, f is the transmission rate, the inhibition effect is
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measured by b,, which includes preventive measures taken by susceptible ones, and the prevention

effect is measured by b,, which includes therapy with regard to infectious agents.

The state of the epidemics is influenced by the environment’s unpredictability and fluctuation (17;
18). In many situations, stochastic differential equation (SDE) models may be a better method of
simulating epidemic dynamics. Based on their deterministic formulations, numerous realistic
stochastic epidemic models can be obtained (19; 7; 20). In order to investigate the stochastic
dynamics of a SIS model and reflect the impact of environmental fluctuations on the dynamics of

the disease, we take into consideration the stochastic version of system (1) that follows:

BSI
dS:[A——— s I]dt— > Bt
T+bs+bg M TY N b5 1 by 01O
dl—[ At v +u+ )I]dt+ T B @
“T+bSs+bg VTHTE %214 byS + byl 2 @

In this context, B; (t) and B, (t) represent two independent standard Brownian motions established
within a complete probability space denoted as (Q, F, {F¢}(t» 0}, P), accompanied by a filtration
{F¢}(t= 0y that adheres to the standard conditions. Also, of,i = 1,2 are the intensities of the white

noises.

The paper is organised as follows: preliminaries for extinction analysis is covered in Section 2.
Sections 3 deftly examine the extinction analysis of infected compartment. A few numerical
simulations are shown in Section 4 to confirm the theoretical findings. Section 5 presents a

conclusion based on the findings.

2. Preliminaries

In this section, we outline certain notations and fundamental results pertaining to system (2), which
serve as the foundation for a more in-depth exploration of its dynamics. We consider the following

n-dimensional stochastic differential equation:
dx(t) = f (x(t),t)dt + g(x(t),t)dB(t) fort = t,.

Denote by C2H(R™ x [to, 0); R,) the family of all nonnegative functions P(x,t) defined on
R™ X [tg, ) such that they are continuously twice differentiable with respect to x and once with

respect to t. We also introduce the differential operator defined in (21).

L—a+§n (60 a+1§n[T( D9 Ol —o
= ot _lfi Y 5y, 2_19 BRI Gxax
i= i,j=
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If L acts on a function P € C2B(R, x [to, ©); R,), then

LP(x,t) = Pe(x,t) + P (x, t) f(x,t) + % trace[gT (x,t) P (x, £) g (x, )],

oP oP
where Pt = E'Px = (a—xl

oP a%p
ey = ()
0xp 0x;0x; (nx n}

From Ito’s formula, if x(t) € R, then

dP(x(t),t) = LP(x(t),t) dt + P,(x(t), )g(x(t), t)dB ().

3. Extinction analysis

This section will analyze the factors leading to the extinction of the infectious diseases identified in

system 2, particularly in the context of a white noise stochastic disturbance.

Theorem 3.1

B

Ifo, > ara)

then two infectious diseases of system (2) go to extinction almost surely (a.s, ).

Proof:

Applying Ito's formula to the system (2), we have

A3 y+u+a)—of s dt
T+b,S+byd < THT 0 ) S b,D)

dlinl(t) = [

2 4B 2.
T Iwwl O

Integrating both side from 0 to t, we have

_ _gd (5@ By 5 _
nI(t) =n1(0) -2 [ (1+bls(f)+b21(f) 622) dv+ 15 t+ MO~ (v +u+at.

Here,

t S(T)

M) = f; o2 s 4B

The function M (t) is also known as the local continuous martingale with M(0) = 0, and by the
following Lemma (3.1), we have

. M(t)
llm{t_)oo} T =0.
Therefore,
2
O WO L E 52 4 2Oy 4+ a).
t t 2 t

Taking the limit superior of both sides of, we have

; 10 B _ ' _B
limge,e0)SUP— < 207 +u+a)<0ifo, > ot

. B , .

Therefore, if o, > Ay then limg;_,) I(t) = 0. This completes the proof.
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Lemma 3.1
From the strong law of large numbers for martingales (21), let (S5(t), I(t)) be a solution of system
(2) with non-negative initial value (5(0),1(0)), then

1t S()I(7) 3
fo dB(7) = 0,

li — 400},
e+l | 971 h,S(2) + byl(2)

1 t
limg_, oo} 7 f o S(v)I(r) dB(r) = 0.
0

4. Numerical validation

In this section, we will conduct numerical simulations utilizing R software to demonstrate the
extinction of infectious disease on the system (2). The numerical approach derived from Milstein’s
higher order technique (22) implemented on the stochastic system (2) under consideration is
provided by

BS;il;

1
———2 uS; —yl; | At + 0,1/ (AY) + s 0PAE(E - 1) ],
1+b15j+b2 Ij u j ]/]> 0'151 ( ) 20-1 ((] )]

BSjlj

1 2 2
Toso,r; O HHF QAL+ 026/ (A8) + 03 At(e] — 1) ].

Liyr = I; + L[ (

where {; and €; are two independent Gaussian random variables of normal distribution N (0, 1)
forj = 1,2,...,n. All numerical simulations reported here are carried out with the choice of time

stepping At = 0.01. In this section, we always take the following parameter values: u = 0.1,y =

0.1,a=01,b.1=0.7,b2=07,1=0.2

(1a) (1b)

S(t), I(t)
S(t), I(t)

0 50 100 0 50 100

Figure 1: Snapshots of contour pictures of the time evolution of susceptible and infected compartment in the
system (1). Figure shows (a) disease free state for § = 0.15 and (b) endemic state for § = 0.45 for the
parameter values: 4 = 0.1,y = 0.1, = 0.1,b; = 0.7,b, = 0.7,4 = 0.2.
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Figure 2: Figure shows stochastic time series of infected compartment of system (2) for (a) oy =0_2 =

0.5,8 = 0.15 and (b) 0; = g, = 0.8, = 0.15. Other parameter values are as same as figure-1.
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Figure 3: Figure shows stochastic time series of infected compartment of system (2) for (a) oy = g, =

0.5,8 = 0.45 and (b) 0; = g, = 2.1, 8 = 0.45. Other parameter values are as same as figure-1.

To utilize our findings, derived in Section 3, the initial numerical time series is generated for the
deterministic system (1) with the above-mentioned parameter values (See figure 1). In this
illustration, we depict time series of disease-free equilibrium (S, 0) for § = 0.15 and endemic
equilibrium (S, 1) for § = 0.45. Moreover, we display several numerical time series simulation
findings for the system (2) to demonstrate the influence of noise on the system dynamics. keeping

fix the parameter § = 0.15, we see that the disease goes to extinction almost surely for the

B (see

stochastic model (2), for o, < 2t

o B
(see fig2a (o_i = 0.5,i = 1,2)) or o, > 2y +pta)

fig 2b (o_i = 0.8,i = 1,2)).
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Finally, keeping fix the parameter 8 at 0.45, we see that the disease go to extinction almost surely

. ﬁ ] ]
for the stochastic model (2), for o, < 20t (see fig 2a (o_i =0.5,i =1,2)) or g, >
B o .
2G i) (see fig2b (o_i = 2.1,i = 1,2)).

5. Conclusion

Epidemic models of the SI type have garnered significant interest in research over an extended
period. Recently, the primary emphasis has shifted towards exploring potential control mechanisms
through the use of stochastic differential equations. Stochastic modelling serves as a robust and
effective approach for addressing the complexities of highly nonlinear natural phenomena. In light
of this, the deterministic model has been expanded into a stochastic differential equation model by
integrating multiplicative noise components. In this study, we have derived the conditions for
stochastic extinction. Our findings indicate that substantial white noise stochastic disturbances can

result in the extinction of epidemics.

6. Data availability

There is no data associated with this paper.
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