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Abstract: It presents a deterministic susceptible-infected (𝑆𝐼) model and the corresponding stochastic model 

with a Beddington-DeAngelis type incidence rate in the present work. Disease extinction thresholds offer 

crucial information for managing, controlling, or eliminating diseases. Ito's formula is used for extinction 

analysis in disease-free states. Additionally, we attempt to demonstrate that the SDE model has disease 

extinction with probability one, but the deterministic model has an endemic. Lastly, our analytical results are 

validated using numerical simulations. 
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1. Introduction and model formulation 

The most straightforward method for mathematically simulating epidemics is the traditional SI 

Model of epidemic spreading (1; 2). Over the past few decades, numerous researchers have 

proposed SI models to study a variety of infectious diseases worldwide (3; 4; 5; 6; 7; 8; 9). Some 

researchers have recently taken into account different kinds of nonlinear incidence rates in their 

research (10; 11; 12; 13; 14). To account for the crowding effect of sick people or the inhibitory 

effect of the healthy population’s shifting behaviour, a saturated type incidence rate is also 

preferable (15). Beddington-DeAngelis type incidence rate is considered for incidence rate (16). 

There is a fixed total number of people. Based on the above assumption, the following deterministic 

model is given below: 

𝑑𝑆

𝑑𝑡
= 𝜆 −

𝛽𝑆𝐼

1 + 𝑏1𝑆 + 𝑏2𝐼
− 𝜇 𝑆 + 𝛾 𝐼 

                                    
𝑑𝐼

𝑑𝑡
=

𝛽𝑆𝐼

1+𝑏1𝑆+𝑏2𝐼
− (𝛾 + 𝜇 + 𝛼)𝐼  (1) 

with nonnegative initial conditions 𝑆(0) ≥  0, 𝐼(0) ≥  0 and 𝑆 + 𝐼 = 𝜆, which is a constant. Here, 

the densities of the susceptible and infected population at any given time 𝑡 are denoted by 𝑆(𝑡) and 

𝐼(𝑡). The duration of recovery for infected individuals is 𝛾, the rate of illness-induced mortality for 

infected individuals is 𝛼, the rate of natural mortality for the overall population is $\mu$, and the 

total recruitment at any given time 𝑡 is 𝜆. Also, 𝛽 is the transmission rate, the inhibition effect is 
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measured by 𝑏1, which includes preventive measures taken by susceptible ones, and the prevention 

effect is measured by 𝑏2, which includes therapy with regard to infectious agents. 

The state of the epidemics is influenced by the environment’s unpredictability and fluctuation (17; 

18). In many situations, stochastic differential equation (SDE) models may be a better method of 

simulating epidemic dynamics. Based on their deterministic formulations, numerous realistic 

stochastic epidemic models can be obtained (19; 7; 20). In order to investigate the stochastic 

dynamics of a SIS model and reflect the impact of environmental fluctuations on the dynamics of 

the disease, we take into consideration the stochastic version of system (1) that follows: 

𝑑𝑆 = [𝜆 −
𝛽𝑆𝐼

1 + 𝑏1𝑆 + 𝑏2𝐼
− 𝜇 𝑆 + 𝛾 𝐼] 𝑑𝑡 − 𝜎1

𝑆𝐼

1 + 𝑏1𝑆 + 𝑏2𝐼
𝑑𝐵1(𝑡) 

𝑑𝐼 = [
𝛽𝑆𝐼

1 + 𝑏1𝑆 + 𝑏2𝐼
− (𝛾 + 𝜇 + 𝛼)𝐼] 𝑑𝑡 + 𝜎2

𝑆𝐼

1 + 𝑏1𝑆 + 𝑏2𝐼
𝑑𝐵2(𝑡)         (2) 

 

In this context, 𝐵1(𝑡) and 𝐵2(𝑡) represent two independent standard Brownian motions established 

within a complete probability space denoted as (Ω, 𝐹, {𝐹𝑡}{𝑡≥ 0}, 𝑃), accompanied by a filtration 

{𝐹𝑡}{𝑡≥ 0} that adheres to the standard conditions. Also, 𝜎𝑖
2, 𝑖 =  1,2 are the intensities of the white 

noises. 

The paper is organised as follows: preliminaries for extinction analysis is covered in Section 2. 

Sections 3 deftly examine the extinction analysis of infected compartment. A few numerical 

simulations are shown in Section 4 to confirm the theoretical findings. Section 5 presents a 

conclusion based on the findings. 

 

2. Preliminaries 

In this section, we outline certain notations and fundamental results pertaining to system (2), which 

serve as the foundation for a more in-depth exploration of its dynamics. We consider the following 

n-dimensional stochastic differential equation: 

𝑑𝑥(𝑡) =  𝑓 (𝑥(𝑡), 𝑡)𝑑𝑡 +  𝑔(𝑥(𝑡), 𝑡)𝑑𝐵(𝑡) 𝑓𝑜𝑟 𝑡 ≥  𝑡0. 

Denote by 𝐶{2,1}(𝑅𝑛 ×  [𝑡0, ∞); 𝑅+) the family of all nonnegative functions 𝑃(𝑥, 𝑡) defined on 

𝑅𝑛  ×  [𝑡0, ∞) such that they are continuously twice differentiable with respect to 𝑥 and once with 

respect to 𝑡. We also introduce the differential operator defined in (21). 

𝐿 =
𝜕

𝜕𝑡
+ ∑ 𝑓𝑖(𝑥, 𝑡)

𝑛

𝑖=1

   
𝜕

𝜕𝑥𝑖
+

1

2
∑ [𝑔𝑇(𝑥, 𝑡)𝑔(𝑥, 𝑡)]𝑖𝑗

𝑛

𝑖,𝑗=1

   
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
. 
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If 𝐿 acts on a function 𝑃 ∈  𝐶{2,1}(𝑅𝑛 × [𝑡0, ∞); 𝑅+), then 

𝐿𝑃(𝑥, 𝑡) = 𝑃𝑡(𝑥, 𝑡) + 𝑃𝑥(𝑥, 𝑡)𝑓(𝑥, 𝑡) +
1

2
 𝑡𝑟𝑎𝑐𝑒[𝑔𝑇(𝑥, 𝑡)𝑃𝑥𝑥(𝑥, 𝑡)𝑔(𝑥, 𝑡)], 

 where 𝑃𝑡 =
𝜕𝑃

𝜕𝑡
, 𝑃𝑥 = (

𝜕𝑃

𝜕𝑥1
, . . . . ,

𝜕𝑃

𝜕𝑥𝑛
) and 𝑃𝑥𝑥 = (

𝜕2𝑃

𝜕𝑥𝑖𝜕𝑥𝑗
)

{𝑛× 𝑛}
. 

 From Ito’s formula, if 𝑥(𝑡) ∈  𝑅𝑛, then 

𝑑𝑃(𝑥(𝑡), 𝑡)  =  𝐿𝑃(𝑥(𝑡), 𝑡) 𝑑𝑡 + 𝑃𝑥(𝑥(𝑡), 𝑡)𝑔(𝑥(𝑡), 𝑡)𝑑𝐵(𝑡). 

 

3. Extinction analysis 

This section will analyze the factors leading to the extinction of the infectious diseases identified in 

system 2, particularly in the context of a white noise stochastic disturbance. 

Theorem 3.1 

If 𝜎2   >
𝛽

2(𝛾+𝜇+𝛼)
, then two infectious diseases of system (2) go to extinction almost surely (𝑎. 𝑠, ). 

Proof:  

Applying Ito's formula to the system (2), we have 

𝑑 𝑙𝑛𝐼(𝑡) = [
𝛽𝑆

1 + 𝑏1𝑆 + 𝑏2𝐼
− (𝛾 + 𝜇 + 𝛼) − 𝜎2

2
𝑆2

2(1 + 𝑏1𝑆 + 𝑏2𝐼)
] 𝑑𝑡

+ 𝜎2

𝑆

1 + 𝑏1𝑆 + 𝑏2𝐼
𝑑𝐵_2(𝑡). 

Integrating both side from 0 to 𝑡, we have 

 𝑙𝑛 𝐼(𝑡) = 𝑙𝑛 𝐼(0) −
𝜎2

2

2
 ∫ (

𝑆(𝜏)

1+𝑏1𝑆(𝜏)+𝑏2𝐼(𝜏)
−

𝛽

𝜎2
2)

2𝑡

0
  𝑑𝜏 +

𝛽2

2𝜎2
2  𝑡 + 𝑀(𝑡) − (𝛾 + 𝜇 + 𝛼)𝑡. 

Here, 

 𝑀(𝑡) = ∫ 𝜎2
𝑆(𝜏)

1+𝑏1𝑆(𝜏)+𝑏2𝐼(𝜏)
 

𝑡

0
 𝑑𝐵(𝜏). 

The function 𝑀(𝑡) is also known as the local continuous martingale with 𝑀(0) = 0, and by the 

following Lemma (3.1), we have 

𝑙𝑖𝑚{𝑡→∞}  
𝑀(𝑡)

𝑡
= 0. 

Therefore,    

   
𝑙𝑛𝐼(𝑡)

𝑡
 ≤

𝑙𝑛𝐼(0)

𝑡
+

𝛽2

2
𝜎2

2 +
𝑀(𝑡)

𝑡
− (𝛾 + 𝜇 + 𝛼). 

Taking the limit superior of both sides of, we have 

 𝑙𝑖𝑚{𝑡→∞}𝑠𝑢𝑝
𝐼(𝑡)

𝑡
≤

𝛽2

2𝜎2
2  − (𝛾 + 𝜇 + 𝛼) < 0 if 𝜎2  >

𝛽

2(𝛾+𝜇+𝛼)
. 

Therefore, if 𝜎2  >
𝛽

2(𝛾+𝜇+𝛼)
, then 𝑙𝑖𝑚{𝑡→∞} 𝐼(𝑡) = 0. This completes the proof. 
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Lemma 3.1 

From the strong law of large numbers for martingales (21), let (𝑆(𝑡), 𝐼(𝑡)) be a solution of system 

(2) with non-negative initial value (𝑆(0), 𝐼(0)), then 

𝑙𝑖𝑚{𝑡→ +∞}

1

𝑡
 ∫ 𝜎

𝑡

0

𝑆(𝜏)𝐼(𝜏)

1 + 𝑏1𝑆(𝜏) + 𝑏2𝐼(𝜏)
 𝑑𝐵(𝜏) = 0, 

𝑙𝑖𝑚{𝑡→ +∞}

1

𝑡
 ∫ 𝜎

𝑡

0

 𝑆(𝜏)𝐼(𝜏) 𝑑𝐵(𝜏) = 0. 

 

4. Numerical validation 

In this section, we will conduct numerical simulations utilizing R software to demonstrate the 

extinction of infectious disease on the system (2). The numerical approach derived from Milstein’s 

higher order technique (22) implemented on the stochastic system (2) under consideration is 

provided by 

𝑆𝑗+1 = 𝑆𝑗 + 𝑆𝑗[(𝜆 −
𝛽𝑆𝑗𝐼𝑗

1 + 𝑏1𝑆𝑗 + 𝑏2 𝐼𝑗
− 𝜇𝑆𝑗 − 𝛾𝐼𝑗) Δ𝑡 + 𝜎1𝜁𝑗√(Δ𝑡) +

1

2
𝜎1

2Δ𝑡(𝜁𝑗
2 − 1) ],       

𝐼𝑗+1 = 𝐼𝑗 + 𝐼𝑗[(
𝛽𝑆𝑗𝐼𝑗

1+𝑏1𝑆𝑗+𝑏2 𝐼𝑗
− (𝛾 + 𝜇 + 𝛼)𝐼𝑗)Δ𝑡 + 𝜎2𝜖𝑗√(Δ𝑡) +

1

2
𝜎2

2Δ𝑡(𝜖𝑗
2 − 1) ]. 

where 𝜁𝑗 and 𝜖𝑗 are two independent Gaussian random variables of normal distribution 𝑁(0, 1) 

for 𝑗 =  1, 2, . . . , 𝑛.  All numerical simulations reported here are carried out with the choice of time 

stepping Δ𝑡  =  0.01. In this section, we always take the following parameter values: 𝜇 = 0.1, 𝛾 =

0.1, 𝛼 = 0.1, 𝑏_1 = 0.7, 𝑏_2 = 0.7, 𝜆 = 0.2. 

(1a)      (1b) 

 

Figure 1: Snapshots of contour pictures of the time evolution of susceptible and infected compartment in the 

system (1). Figure shows (a) disease free state for 𝛽 = 0.15 and (b) endemic state for 𝛽 = 0.45 for the 

parameter values: 𝜇 = 0.1, 𝛾 = 0.1, 𝛼 = 0.1, 𝑏1 = 0.7, 𝑏2 = 0.7, 𝜆 = 0.2. 
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(2a)      (2b) 

 

Figure 2: Figure shows stochastic time series of infected compartment of system (2) for (a)  𝜎1 = 𝜎_2 =

0.5, 𝛽 = 0.15 and (b) 𝜎1 = 𝜎2 = 0.8, 𝛽 = 0.15. Other parameter values are as same as figure-1. 

 

(3a)       (3b) 

 

Figure 3: Figure shows stochastic time series of infected compartment of system (2) for (a) 𝜎1 = 𝜎2 =

0.5, 𝛽 = 0.45 and (b) 𝜎1 = 𝜎2 = 2.1, 𝛽 = 0.45. Other parameter values are as same as figure-1. 

 

To utilize our findings, derived in Section 3, the initial numerical time series is generated for the 

deterministic system (1) with the above-mentioned parameter values (See figure 1). In this 

illustration, we depict time series of disease-free equilibrium (𝑆, 0) for 𝛽 = 0. 15 and endemic 

equilibrium (𝑆, 𝐼) for 𝛽 = 0. 45. Moreover, we display several numerical time series simulation 

findings for the system (2) to demonstrate the influence of noise on the system dynamics. keeping 

fix the parameter 𝛽 = 0. 15, we see that the disease goes to extinction almost surely for the 

stochastic model (2), for 𝜎2  <   
𝛽

2(𝛾+𝜇+𝛼)
 (see fig 2a (𝜎_𝑖 = 0.5, 𝑖 = 1,2 )) or 𝜎2 >   

𝛽

2(𝛾+𝜇+𝛼)
 (see 

fig 2b (𝜎_𝑖 = 0.8, 𝑖 = 1,2 )). 
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Finally, keeping fix the parameter 𝛽 at 0.45, we see that the disease go to extinction almost surely 

for the stochastic model (2), for 𝜎2  <   
𝛽

2(𝛾+𝜇+𝛼)
 (see fig 2a (𝜎_𝑖 = 0.5, 𝑖 = 1,2 )) or 𝜎2 >

  
𝛽

2(𝛾+𝜇+𝛼)
 (see fig 2b (𝜎_𝑖 = 2.1, 𝑖 = 1,2 )). 

 

5. Conclusion 

Epidemic models of the SI type have garnered significant interest in research over an extended 

period. Recently, the primary emphasis has shifted towards exploring potential control mechanisms 

through the use of stochastic differential equations. Stochastic modelling serves as a robust and 

effective approach for addressing the complexities of highly nonlinear natural phenomena. In light 

of this, the deterministic model has been expanded into a stochastic differential equation model by 

integrating multiplicative noise components. In this study, we have derived the conditions for 

stochastic extinction. Our findings indicate that substantial white noise stochastic disturbances can 

result in the extinction of epidemics. 

 

6. Data availability 

There is no data associated with this paper. 
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